Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(14): 8060-8071, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533667

RESUMO

Smoke taint in wine has become a critical issue in the wine industry due to its significant negative impact on wine quality. Data-driven approaches including univariate analysis and predictive modeling are applied to a data set containing concentrations of 20 VOCs in 48 grape samples and 56 corresponding wine samples with a taster-evaluated smoke taint index. The resulting models for predicting the smoke taint index of wines are highly predictive when using as inputs VOC concentrations after log conversion in both grapes and wines (Pearson Correlation Coefficient PCC = 0.82; R2 = 0.68) and less so when only grape VOCs are used (Pearson Correlation Coefficient PCC = 0.76; R2 = 0.56), and the classification models also show the capacity for detecting smoke-tainted wines using both wine and grape VOC concentrations (Recall = 0.76; Precision = 0.92; F1 = 0.82) or using only grape VOC concentrations (Recall = 0.74; Precision = 0.92; F1 = 0.80). The performance of the predictive model shows the possibility of predicting the smoke taint index of the wine and grape samples before fermentation. The corresponding code of data analysis and predictive modeling of smoke taint in wine is available in the Github repository (https://github.com/IBPA/smoke_taint_prediction).


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Compostos Orgânicos Voláteis/análise , Fumaça/análise , Frutas/química , Tabaco
2.
Food Chem ; 439: 138032, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039610

RESUMO

The majority of rosé wines are bottled in clear bottles as color is an important factor in consumer preference. Post-bottling wine can be exposed to UV-visible light and temperature fluctuations resulting in quality degradation. This study investigated the impact of bottle color (flint and antique green), light exposure (darkness, LED and fluorescent bulb), and temperature (12 °C and 22 °C) on rosé wine quality using a full factorial design with three different wines (Grenache, Pinot noir and Zinfandel). The impact on chemical composition, color, phenolics and aromatics was determined. Projective mapping was carried out for sensorial analysis. Changes in the aromatics, color and phenolic composition were detectable after three months and more noticeable after six months of storage. Overall, all variables studied impacted rosé wine characteristics significantly. However, higher temperature in combination with clear glass bottles under fluorescent light were the most detrimental conditions.


Assuntos
Vinho , Vinho/análise , Iluminação , Cor , Temperatura , Luz , Fenóis/análise
3.
J Sci Food Agric ; 103(7): 3457-3467, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36727418

RESUMO

BACKGROUND: Grapevine red blotch virus (GRBV) is the causal agent of grapevine red blotch disease and is known to delay grape ripening. However, grape cell-wall modifications during GRBV infection are largely unknown, even though the cell wall plays a large role in pathogenicity, viral interactions with host plants, and phenolic extractability during winemaking. Understanding the impact of GRBV infection on cell-wall metabolism is important for the development of potential mitigations strategies. In this study, high-throughput transcriptome sequencing was conducted on Vitis vinifera L. 'Merlot' grapes during ripening. The cell-wall composition, phenolic content, and phenolic extractability at two different commercial harvest points were also determined. RESULTS: Log fold changes indicated a strong induction in diseased grapes at harvest of several transcripts involved in cell-wall solubilization and degradation. However, these observations did not translate to changes in cell-wall composition at either harvest point in diseased grapes, potentially suggesting post-transcriptional regulation. Moderate induction of pectin methylesterase inhibitor transcripts and transcripts associated with pathogenesis-related proteins coincided with increases in pectin and soluble proteins in cell walls of diseased grapes at harvest. Both pectin and pathogenesis-related proteins are known to retain phenolic compounds during winemaking. CONCLUSION: Our study corroborates this finding when the percentage extractability of flavonols in wines was significantly lower when made from GRBV-infected fruit. These results suggest GRBV alters the grape cell walls, consequently decreasing phenolic extraction during winemaking. © 2023 Society of Chemical Industry.


Assuntos
Geminiviridae , Vitis , Vinho , Vitis/química , Doenças das Plantas , Vinho/análise , Parede Celular/química , Frutas/química , Fenóis/análise , Geminiviridae/fisiologia , Pectinas/análise
4.
Front Plant Sci ; 14: 1085939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778687

RESUMO

Introduction: Overhead photoselective shade films installed in vineyards improve berry composition in hot grape-growing regions. The aim of the study was to evaluate the flavonoid and aroma profiles and composition of wines from Cabernet Sauvignon grapes (Vitis vinifera L.) treated with partial solar radiation exclusion. Methods: Experimental design consisted in a randomized experiment with four shade films (D1, D3, D4, D5) with differing solar radiation spectra transmittance and compared to an uncovered control (C0) performed over two seasons (2021 and 2022) in Oakville (CA, USA). Berries were collected by hand at harvest and individual vinifications for each treatment and season were conducted in triplicates. Then, wine chemical composition, flavonoid and aromatic profiles were analyzed. Results: The wines from D4 treatment had greater color intensity and total phenolic index due to co-pigmentation with anthocyanins. Shade film wines D5 and D1 from the 2020 vintage demonstrated increased total anthocyanins in the hotter of the two experimental years. In 2021, reduced cluster temperatures optimized total anthocyanins in D4 wines. Reduced cluster temperatures modulated anthocyanin acylation, methylation and hydroxylation in shade film wines. Volatile aroma composition was analyzed using gas chromatography mass spectroscopy (GCMS) and D4 wines exhibited a more fruity and pleasant aroma profile than C0 wines. Discussion: Results provided evidence that partial solar radiation exclusion in the vineyard using overhead shade films directly improved flavonoid and aroma profiles of resultant wines under hot vintage conditions, providing a tool for combatting air temperatures and warmer growing conditions associated with climate change.

5.
Food Chem ; 342: 128312, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33268164

RESUMO

The grapevine red blotch disease (GRBD) was first noticed in 2008, impacting grape ripening. In general, GRBD reduces grape and wine quality resulting in significant economic losses. The purpose of the present study was to evaluate the effect of GRBD on agronomical parameters of 'Cabernet Sauvignon' vines at harvest. Using a metabolomics approach, the influence on primary and secondary metabolite profiling in skin + pulp/flesh and seeds were also determined. GRBD influenced °Brix and berry weight, as well as primary and secondary metabolites in both tissues. 1D 1H NMR was effective in quantifying the main primary and secondary metabolites affected by GRBD. RP-HPLC was similarly able to quantify the main phenolics affected. Multivariate analysis showed the influence of the virus on grape metabolites using both tools in two berry tissues. The effectiveness of both tools to describe sample variability was compared and the most affected metabolites in each tissue could be identified.


Assuntos
Geminiviridae/patogenicidade , Doenças das Plantas/microbiologia , Vitis/metabolismo , Vitis/microbiologia , Vinho , Aminoácidos/metabolismo , Cromatografia Líquida de Alta Pressão , Cor , Fenóis/análise , Espectroscopia de Prótons por Ressonância Magnética
6.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927698

RESUMO

The quantitative and qualitative impacts of anthocyanins on proanthocyanidin adsorption to grape-derived cell wall material were investigated in fifteen unique systems of varying temperatures, ethanol concentrations, and proanthocyanidin concentrations. Proanthocyanidin solutions were exposed to cell wall material and monitored for changes in concentration over 24 h. Increases in both temperature and ethanol resulted in a larger retention of proanthocyanidins in solution and typically faster adsorption kinetics. Analysis of the solution after exposure to cell wall revealed a significant reduction in the molecular weight of proanthocyanidins present in solution, suggesting that anthocyanins do not alter a previously described mechanism of preferentially binding large molecular weight molecules. Additionally, a reduction in polymeric pigment abundance was noted in most conditions, suggesting rapid formation of polymeric pigment in the model solution and preferential adsorption of the polymeric pigment to cell wall material. Compared to a previous study of proanthocyanidin adsorption in the absence of anthocyanins, a significantly larger percentage of proanthocyanidin material was lost via adsorption-up to 70% of available material. In a winemaking context, this may suggest a preferential loss of polymeric pigment via adsorption to cap cell wall material compared to non-pigmented proanthocyanidins and free anthocyanins.


Assuntos
Antocianinas/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Etanol/farmacologia , Proantocianidinas/metabolismo , Temperatura , Vitis/metabolismo , Adsorção , Antocianinas/química , Parede Celular/química , Etanol/química , Frutas/química , Cinética , Peso Molecular , Pigmentos Biológicos , Proantocianidinas/química , Vitis/química , Vinho/análise
7.
Front Plant Sci ; 11: 707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595661

RESUMO

Girdling is a traditional horticultural practice applied at fruit set or other phenological stages, and is used mostly as a vine management. In grapevines, it is used primarily for table grapes to improve berry weight, sugar content, color, and to promote early harvest. The objective of this study was to evaluate the effect of trunk girdling applied at veraison, in 'Cabernet Sauvignon' wine grapes (Vitis vinifera L.), on agronomical and physiological parameters during vine development from the onset of ripening (veraison) to harvest, and additionally to quantify the effect of girdling on primary and secondary metabolism. Girdling was applied 146 days after pruning (dap) at veraison, when berry sampling for metabolomics and agronomical evaluations commenced, with a further three sampling dates until harvest, at 156 dap (30% maturation, 10 days after girdling-dag), 181 dap (70% maturation, 35 dag), and 223 dap (commercial harvest, 77 dag). Skin/pulp and seed tissues were extracted separately and metabolomics was performed using one-dimensional proton nuclear magnetic resonance (1D 1H NMR) spectroscopy and high performance liquid chromatography (HPLC-DAD). At harvest, girdling significantly increased stomatal conductance (gs) in vines, decreased glutamine concentrations, and increased anthocyanin and flavonol concentrations in the skin/pulp tissues of grape berries. Berry weight was reduced by 27% from 181 dap to harvest, and was significantly higher in grapes from girdled vines at 181 dap. Sugars, organic acids, and other amino acids in skin/pulp or seeds were not significantly different, possibly due to extra-fascicular phloem vessels transporting metabolites from leaves to the roots. Using a metabolomics approach, differences between skin/pulp and seeds tissues were meaningful, and a greater number of secondary metabolites in skin/pulp was affected by girdling than in seeds. Girdling is a simple technique that could easily be applied commercially on vine management to improve berry color and other phenolics in 'Cabernet Sauvignon' grapes.

8.
Molecules ; 24(19)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581447

RESUMO

Desorption of proanthocyanidins (PA) from grape cell wall material (CWM) was investigated in solutions of varying ethanol concentrations and increasing temperature. The results reveal the reversibility of PA-CWM interactions and the role that temperature and ethanol concentration play in the extent of PA desorption. Sequentially raising temperature from 15 to 35 °C resulted in desorption of up to 48% of the initial adsorbed PA. A comparison to a phenolic extraction model showed significant differences between the predicted and actual amount of PA that desorbed from the CWM. This suggests that the initial conditions of temperature and ethanol concentration must be considered when estimating PA extraction in red wine production. Under typical winemaking conditions, a significant amount of PA may be irreversibly adsorbed if exposed to CWM at low temperature (i.e., cold soak). A compositional analysis suggests the selective desorption of large molecular weight PA from CWM under all experimental conditions. Additionally, a preferential desorption of skin-derived PA over seed-derived PA was noted in the absence of ethanol.


Assuntos
Parede Celular/química , Proantocianidinas/química , Vinho/análise , Etanol/química , Temperatura Alta , Peso Molecular , Vitis/química
9.
Molecules ; 24(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540067

RESUMO

The effects of temperature and ethanol concentration on the kinetics of anthocyanin adsorption and desorption interactions with five cell wall materials (CWM) of different composition were investigated. Using temperatures of 15 °C and 30 °C and model wine with ethanol concentrations of 0% and 15% (v/v) over 120 min, the adsorption and desorption rates of five anthocyanin-glucosides were recorded in triplicate. Small-scale experiments were conducted using a benchtop incubator to mimic a single berry fermentation. Results indicate that more than 90% of the adsorption occurs within the first 60 min of the addition of anthocyanins to CWM. However, desorption appears to occur much faster, with maximum desorption being reached after 30 min. The extent of both adsorption and desorption was clearly dependent not only on temperature and ethanol concentration but also on the CWM composition.


Assuntos
Antocianinas/química , Parede Celular/química , Etanol/química , Frutas/química , Temperatura Alta , Vitis/química , Glucosídeos/química
10.
Molecules ; 24(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986909

RESUMO

Phenolic extraction is a critical part of red wine making. Though empirical models of phenolic extraction kinetics exist, the current level of mechanistic understanding does not allow for accurate predictions. In this work, we propose a mechanistic model for the extraction of phenolics from grape skins and seeds as a function of temperature and ethanol. This model examines the release of phenolics, the adsorption of phenolics onto grape material, and the disappearance of anthocyanins from solution. Additionally, we performed epifluorescence microscopy to explore our finding that seed tannins' release rate appears independent of concentration, and found that the grape seed appears to ablate over fermentation. We also determined the activation energy of anthocyanin disappearance, in good agreement with similar systems. The proposed model results in an excellent fit, and increases the understanding of phenolic extraction and the ability to predict and optimize product outcome in red wine making.


Assuntos
Fenóis/química , Vitis/química , Vinho , Etanol/química , Fermentação/fisiologia , Sementes/química , Temperatura
11.
Front Chem ; 6: 131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740576

RESUMO

The maturity of grapes is usually monitored by means of the sugar concentration. However, the assessment of other parameters such as the phenolic content is also important because the phenolic maturity has an important impact on the organoleptic characteristics of wines. In this work, voltammetric sensors able to detect phenols in red grapes have been developed. They are based on metal oxide nanoparticles (CeO2, NiO, and TiO2,) whose excellent electrocatalytic properties toward phenols allows obtaining sensors with detection limits in the range of 10-8 M and coefficients of variation lower than 7%. An electronic tongue constructed using a combination of the nanoparticle-based sensors is capable to monitor the phenolic maturity of red grapes from véraison to maturity. Principal Component Analysis (PCA) can be successfully used to discriminate samples according to the ripeness. Regression models performed using Partial Least Squares (PLS-1) have established good correlations between voltammetric data obtained with the electrochemical sensors and the Total Polyphenolic Index, the Brix degree and the Total Acidity, with correlation coefficients close to 1 and low number of latent variables. An advantage of this system is that the electronic tongue can be used for the simultaneous assessment of these three parameters which are the main factors used to monitor the maturity of grapes. Thus the electronic tongue based on metal oxide nanoparticles can be a valuable tool to monitor ripeness. These results demonstrate the exciting possible applications of metal oxide nanoparticles in the field of electronic tongues.

12.
Food Res Int ; 107: 544-550, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29580518

RESUMO

In this work, an alternative method to monitor the phenolic maturity of grapes was developed. In this approach, the skins of grapes were used to cover the surface of carbon paste electrodes and the voltammetric signals obtained with the skin-modified sensors were used to obtain information about the phenolic content of the skins. These sensors could easily detect differences in the phenolic composition of different Spanish varieties of grapes (Mencía, Prieto Picudo and Juan García). Moreover, sensors were able to monitor changes in the phenolic content throughout the ripening process from véraison until harvest. Using PLS-1 (Partial Least Squares), correlations were established between the voltammetric signals registered with the skin-modified sensors and the phenolic content measured by classical methods (Glories or Total Polyphenol Index). PLS-1 models provided additional information about Brix degree, density or sugar content, which usually used to establish the harvesting date. The quality of the correlations was influenced by the maturation process and the structural and mechanical skin properties. Thus the skin sensors fabricated with Juan García and Prieto Picudo grapes (that showed faster polyphenolic maturation and a higher amount of extractable polyphenols than Mencía), showed good correlations and therefore could be used to monitor the ripening.


Assuntos
Análise de Alimentos/métodos , Frutas/química , Fenóis/análise , Fenóis/química , Vitis/química , Eletrodos , Análise dos Mínimos Quadrados
13.
Artigo em Inglês | MEDLINE | ID: mdl-27826547

RESUMO

The quality of wines is usually evaluated by a sensory panel formed of trained experts or traditional chemical analysis. Over the last few decades, electronic noses (e-noses) and electronic tongues have been developed to determine the quality of foods and beverages. They consist of arrays of sensors with cross-sensitivity, combined with pattern recognition software, which provide a fingerprint of the samples that can be used to discriminate or classify the samples. This holistic approach is inspired by the method used in mammals to recognize food through their senses. They have been widely applied to the analysis of wines, including quality control, aging control, or the detection of fraudulence, among others. In this paper, the current status of research and development in the field of e-noses and tongues applied to the analysis of wines is reviewed. Their potential applications in the wine industry are described. The review ends with a final comment about expected future developments.

14.
Beilstein J Nanotechnol ; 6: 2052-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26665076

RESUMO

Two different methods were used to obtain polypyrrole/AuNP (Ppy/AuNP) composites. One through the electrooxidation of the pyrrole monomer in the presence of colloidal gold nanoparticles, referred to as trapping method (T), and the second one by electrodeposition of both components from one solution containing the monomer and a gold salt, referred to as cogeneration method (C). In both cases, electrodeposition was carried out through galvanostatic and potentiostatic methods and using platinum (Pt) or stainless steel (SS) as substrates. Scanning electron microscopy (SEM) demonstrated that in all cases gold nanoparticles of similar size were uniformly dispersed in the Ppy matrix. The amount of AuNPs incorporated in the Ppy films was higher when electropolymerization was carried out by chronopotentiometry (CP). Besides, cogeneration method allowed for the incorporation of a higher number of AuNPs than trapping. Impedance experiments demonstrated that the insertion of AuNPs increased the conductivity. As an electrochemical sensor, the Ppy/AuNp deposited on platinum exhibited a strong electrocatalytic activity towards the oxidation of catechol. The effect was higher in films obtained by CP than in films obtained by chronoamperometry (CA). The influence of the method used to introduce the AuNPs (trapping or cogeneration) was not so important. The limits of detection (LOD) were in the range from 10(-5) to 10(-6) mol/L. LODs attained using films deposited on platinum were lower due to a synergy between AuNPs and platinum that facilitates the electron transfer, improving the electrocatalytic properties. Such synergistic effects are not so pronounced on stainless steel, but acceptable LOD are attained with lower price sensors.

15.
Sensors (Basel) ; 15(11): 29233-49, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26610494

RESUMO

An array of electrochemical quartz crystal electrodes (EQCM) modified with nanostructured films based on phthalocyanines was developed and used to discriminate musts prepared from different varieties of grapes. Nanostructured films of iron, nickel and copper phthalocyanines were deposited on Pt/quartz crystals through the Layer by Layer technique by alternating layers of the corresponding phthalocyanine and poly-allylamine hydrochloride. Simultaneous electrochemical and mass measurements were used to study the mass changes accompanying the oxidation of electroactive species present in must samples obtained from six Spanish varieties of grapes (Juan García, Prieto Picudo, Mencía Regadío, Cabernet Sauvignon, Garnacha and Tempranillo). The mass and voltammetric outputs were processed using three-way models. Parallel Factor Analysis (PARAFAC) was successfully used to discriminate the must samples according to their variety. Multi-way partial least squares (N-PLS) evidenced the correlations existing between the voltammetric data and the polyphenolic content measured by chemical methods. Similarly, N-PLS showed a correlation between mass outputs and parameters related to the sugar content. These results demonstrated that electronic tongues based on arrays of EQCM sensors can offer advantages over arrays of mass or voltammetric sensors used separately.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...